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Front-page photo:  Simulation of
communication traffic between sort-
first processors rendering NCGA
ÒheadÓ Picture-Level benchmark [1].
Arrow color indicates the number of
primitives transferred between
processors between these two
successive frames.  Range is 0
(black) to 800 (white) using a
heated-object spectrum.

Abstract

We describe three broad classes of parallel rendering
methods, based on where the sort from object-space to
screen space occurs.  These classes encompass most feed-
forward parallel software and hardware rendering
architectures that have been described to date.  After
introducing the classes, we perform a coarse analysis of the
aggregate processing and communication costs of each and
identify constraints they impose on the rendering
application.  The aim is to provide a conceptual model of
the tradeoffs between the approaches as an aid to designers
and implementers of high-performance, parallel rendering
systems.

Introduction

Graphics rendering is notoriously compute intensive,
particularly when realistic images and fast updates are
required.  Demanding applications, such as scientific visual-
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Figure 1.  Graphics pipeline in a fully parallel rendering
system.  Processors G perform geometry processing.
Processors R perform rasterization.

ization, CAD, vehicle simulation, and virtual reality can
require hundreds of MFLOPS of floating-point performance
and gigabytes per second of memory bandwidth, far beyond
the capabilities of a single processor.  For these reasons,
parallelism has become a crucial tool to building high-
performance graphics systems, whether these be special-
purpose hardware systems, or software systems for general-
purpose multicomputers.

Parallelism of various types may be employed at many
levels:  for example, functional parallelism (pipelining) can
speed critical calculations and data parallelism can be used
to compute multiple results at once.  Common data-parallel
approaches are by object (object-parallelism) and by pixel
or portion of the screen (pixel- or image-parallelism).

Several taxonomies of parallel rendering algorithms have
been proposed [2, 3, 4].  These taxonomies are useful for
classifying and understanding systems, but do not lend
themselves easily to comparison or analysis.  Some
rendering systems have been analyzed in isolation [5, 6, 7].
However, these analyses tend to focus on unique attributes
of each system and make comparison between systems
difficult.

In this paper we describe a classification scheme, which
we hope will provide a more structured framework for
reasoning about parallel rendering.  The scheme is based on
where the sort from object coordinates to screen coordinates
occurs, which we believe to be fundamental whenever both
geometry processing and rasterization are performed in
parallel.  This classification scheme allows computational
and communication costs to be analyzed and encompasses
the bulk of current and proposed highly parallel renderersÑ
both hardware and software.

The paper is organized as follows:  First we review the
standard feed-forward rendering pipeline, showing how
different ways of parallelizing it lead to three classes of
rendering algorithms.  Next, we consider each of these
classes in detail, analyzing their aggregate processing and
communication costs, possible variations, and constraints
they may impose on rendering applications.  Finally, we use
these analyses to compare the classes and identify when
each is likely to be preferable.

Parallel rendering as a sorting
problem

Figure 1 shows a simplified version of the standard, feed-
forward rendering pipeline, adapted for parallel rendering.
It consists of two principal parts:  geometry processing
(transformation, clipping, lighting, etc.), and rasterization
(scan-conversion, shading, and visibility determination).  In
this paper we target rendering rates that are sufficiently high
that both geometry processing and rasterization must be
performed in parallel.  We say such systems are fully
parallel.

Geometry processing usually is parallelized by assigning
each processor a subset of the primitives (objects) in the
scene.  Rasterization usually is parallelized by assigning
each processor a portion of the pixel calculations.

The essence of the rendering task is to calculate the effect
of each primitive on each pixel.  Due to the arbitrary nature
of the modeling and viewing transformations, a primitive
can fall anywhere on (or off) the screen.  Thus rendering
can be viewed as a problem of sorting primitives to the
screen, as noted by Sutherland, Sproull, and Schumacher in
their seminal paper on visible-surface algorithms [8].   For
fully parallel renderers, this sort involves a redistribution of
data between processors, because responsibility for
primitives and pixels is distributed.

The location of this sort largely determines the structure
of the resulting parallel rendering system.  Understanding
the variety of system structures possible within the
constraints of this distributed sort and realizable with
available computational resources is the main challenge for
designers of fully parallel rendering systems.

The sort can, in general, take place anywhere in the
rendering pipeline:  during geometry processing (Òsort-
firstÓ), between geometry processing and rasterization
(Òsort-middleÓ), or during rasterization (Òsort-lastÓ).  Sort-
first means redistributing ÒrawÓ primitivesÑbefore their
screen-space parameters are known.  Sort-middle means
redistributing screen-space primitives.  Sort-last means
redistributing pixels, samples, or pixel fragments.

Each of these choices leads to a separate class of parallel
rendering algorithms with distinct properties.  We describe
the classes briefly now and examine them in more detail in
later sections.
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Figure 2.  Sort-first.  Redistributes raw primitives during
geometry processing.

Sort-first

The aim in sort-first is to distribute primitives early in the
rendering pipelineÑduring geometry processingÑto pro-
cessors that can do the remaining rendering calculations
(Figure 2).  This generally is done by dividing the screen
into disjoint regions and making processors (called
renderers) responsible for all rendering calculations that
affect their respective screen regions.

Initially, primitives are assigned to renderers in some
arbitrary fashion.  When rendering begins, each renderer
does enough transformation to determine into which
region(s) each primitive falls, generally computing the
screen-space bounding box of the primitive.  We call this
pre-transformation, and it may or may not involve actually
transforming the primitive.  In some cases, primitives will
fall into the screen regions of renderers other than the one
on which they reside.  These primitives must then be redis-
tributed over an interconnect network to the appropriate
renderer (or renderers), which then perform the remainder
of the geometry-processing and rasterization calculations
for these primitives.

This redistribution of primitives at the beginning of the
rendering process is the distinguishing feature of sort-first.
It clearly involves overhead, since for some primitives, a
portion of geometry processing is done on the wrong
renderer.  The results of these calculations must either be
sent or they must be recomputed on the new renderer(s).

Sort-first is the least explored of the three classes; to the
authors' knowledge, no sort-first systems have been built.
Although sort-first may seem impractical at first, we will
see later that it can require much less communication
bandwidth than the other approaches, particularly if
primitives are tessellated or if frame-to-frame coherence can

be exploited.   We will discuss its potential advantages and
disadvantages in more detail in a later section.

Sort-middle

In sort-middle, primitives are redistributed in the middle
of the rendering pipelineÑbetween geometry processing
and rasterization.  Primitives at this point have been
transformed into screen coordinates and are ready for
rasterization.  Since geometry processing and rasterization
are performed on separate processors in many systems, this
is a natural place to break the pipeline.

In a sort-middle system, geometry processors are assigned
arbitrary subsets of the primitives to be displayed;
rasterizers are assigned a portion of the display screen
(generally a contiguous region of pixels, as in sort-first).
The two processor groups may be separate sets of
processors, or they may time-share the same physical
processors.

During each frame, geometry processors transform, light,
etc. their portion of the primitives and classify them with
respect to screen region boundaries.  They then transmit all
of these screen-space primitives to the appropriate rasterizer
or rasterizers, as shown in Figure 3.
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Figure 3.  Sort-middle.   Redistributes screen-space
primitives between geometry processing and
rasterization.

Sort-middle is general and straightforward, and has been
the most common approach to date for both hardware [9,
10, 11] and software [6, 7, 12] parallel rendering systems.
We will examine the advantages and disadvantages of sort-
middle in more detail later.

Sort-last

Sort-last defers sorting until the end of the rendering
pipelineÑafter primitives have been rasterized into pixels,
samples, or pixel fragments.  Processors in sort-last (called
renderers) each are assigned arbitrary subsets of the
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primitives.  Each computes pixel values for its subset, no
matter where they fall in the screen.  Renderers then
transmit these pixels over an interconnect network to
compositing processors which resolve the visibility of pixels
from each renderer (Figure 4).

In sort-last, renderers operate independently until the
visibility stageÑthe very end of the rendering pipeline.  The
interconnect network, however, must handle all of the pixel
data generated on all of the renderers.  For interactive or
real-time applications rendering high-quality images, this
can result in very high data rates.

Redistribute pixels, 
samples, or fragments

Graphics database
(arbitrarily partitioned)
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Display
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processing

(Compositing)

RasterizationRRRR

Figure 4.  Sort-last.  Redistributes pixels, samples, or
pixel fragments during rasterization.

Sort-last can be done in at least two ways.  One approach,
which we call SL-sparse, minimizes communication by only
distributing pixels actually produced by rasterization.  The
second approach, called SL-full,  stores and transfers a full
image from each renderer.  Both methods have advantages,
as we will see later.

Sort-last systems have existed in various forms for more
than 20 years.  The 1967 GE NASA II flight simulator used
a simple version of SL-full in which a processor was
assigned to each primitive [13].  Since then, several
primitive-per-processor [3, 14] and multiple-primitive-per-
processor [15, 16] SL-full systems have been proposed.
Several recent commercial systems have used SL-sparse
[17, 18, 19].  We will examine sort-last in more detail
shortly.

Processing and communication
model

We now analyze each of the three rendering methods in
more detail.  The aim is to build a quantitative model of
their processing and communication costs to use as a basis
for comparing them.   We will first consider the processing
required to render on a uniprocessor, and will then evaluate
the additional processing and communication requirements

of the parallel methods.  We will focus on the inherent
overhead in the methods, and will not specifically model
factors such as load balancing, buffering, transport delay,
etc., which affect performance significantly, but depend on
the detailed implementation of a system and on the graphics
scene itself.  We will, however, discuss these factors
(particularly load balancing) where appropriate.

Uniprocessor pipeline

For the analysis that follows, we refine the rendering
pipeline as shown in Figure 5.  First, some rendering
systems tessellate primitives in order to generate higher
quality images (RenderMan [20] is one widely used
example).  Tessellation is the process of decomposing larger
primitives into smaller ones, typically into polygons or
polygonal meshes.  Not all rendering packages tessellate.
We include it in the pipeline because it can greatly expand
the number of primitives that need to be displayed.  Second,
we break rasterization into two stages called pixel rendering
(computing pixel values) and visibility (determining which
pixels are visible), since some algorithms perform these on
separate processors.  Finally, we do not explicitly mention
shading, which can be a major consumer of processing
cycles, but can occur almost anywhere in the pipeline.
Shading should be considered a part of geometry processing
or of pixel rendering, as appropriate.

Pipeline stage Processing cost

Geometry:
   pre-tessellation
   post-tessellation

nr Çgeom-pre-tessÈ +
nd Çgeom-post-tessÈ

Pixel Rendering nd Çrend-setupÈ +
ndadS ÇrendÈ

Visibility ndadS ÇcompÈ

Figure 5.  Rendering pipeline and processing costs in a
uniprocessor implementation.

We assume that we are rendering a dataset containing nr
raw primitives with average size ar.  We will call primitives
that result from tessellation display primitives.  If T is the
tessellation ratio, there are nd = Tnr of these, with average
size ad = ar/T.  If there is no tessellation,  T = 1, nd = nr, and
a d = ar.  We assume that we are rendering an image
containing A pixels and that we are to compute S samples
per pixel.  For simplicity, we assume that all primitives are
potentially visible (i.e. lie within the viewing frustum).

Processing costs

Figure 5 lists the processing costs for each stage of the
uniprocessor rendering pipeline.  First, the nr raw primitives
are processed by the stages of the geometry pipeline up to
tessellation.  The cost for this is nr Çgeom-pre-tessÈ ("Ç...È"
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Terms used in the analysis
Term Definition

A The resolution of the screen, in pixels.

N The number of processors in the
multiprocessor.

nr, nd The number of raw, and display primitives,
respectively.

ar, ad The average size, in pixels, of a raw and
display primitive.

Or, Od The average number of screen regions raw
and display primitives overlap.

fr, fd The fraction of pre-tessellation and post-
tessellation geometry processing that is
duplicated when a raw primitive overlaps
multiple screen regions.

T The tessellation ratio, nd/nr.
S The number of samples per pixel.

c The fraction of raw primitives that must be
redistributed each frame when sort-first
takes advantage of frame-to-frame
coherence.

denotes "cost", most naturally in units of time).  The nd
display primitives that result are then processed by the
geometry pipeline stages following tessellation, at a cost of
nd Çgeom-post-tessÈ.  Rasterization follows.  Pixel
rendering is the first stage and consists of two parts:  set-up
and per-sample rendering operations, whose costs are,
respectively, nd Çrend-setupÈ and ndadS ÇrendÈ.  Finally,
the cost of compositing is ndadS ÇcompÈ, where ÇcompÈ is
the cost of compositing one sample (generally a z
comparison and conditional write).  In the uniprocessor
model, there is no data redistribution or "sort".

Sort-first analysis

We begin our analysis with sort-first.  Figure 6 shows its
rendering pipeline and what it costs beyond uniprocessor
rendering.  We assume in this analysis that primitives are
redistributed as early in the rendering pipeline as possible
and that renderers discard transformed data when they send
a primitive to a new renderer.  (An alternative is to
redistribute later in the pipeline and send the transformed
data.  Although we will not focus on this alternative, its
analysis is similar to the case we will present here.)

Processing and communication costs

The first steps in sort-first are to "pre-transform" the raw
primitives so that their screen extents are known, and to
classify them with respect to screen-region buckets.  Each
bucket belongs to a processor, and a primitive may fall in

several buckets when it overlaps several regions.  We define
an overlap factor Or, which is the average number of
regions a raw primitive overlaps.  If the cost to precompute
a primitive's screen coordinates is Çpre-xformÈ and the cost
to put the primitive in each of its buckets is ÇbucketrÈ, then
the overhead for these stages is nr Çpre-xformÈ and nrOr
ÇbucketrÈ.

Pipeline stage SF overhead cost

Pre-transform nr Çpre-xformÈ
Bucketization nrOr ÇbucketrÈ
Redistribution cnrOr ÇprimrÈ
Geometry:
   pre-tessellation
   post-tessellation

nr(Or-1) fr Çgeom-pre-tessÈ+
nd(Od-1) fd Çgeom-post-tessÈ

Pixel Rendering nd(Od-1) Çrend-setupÈ
Visibility Ñ

Figure 6.  Sort-first processing and communication
overhead (communication costs indicated by  box).

Next, primitives on the wrong renderer must be
distributed to the correct renderer(s).  The number of
primitives redistributed depends on the application and
whether frame-to-frame coherence is employed.  For
example, if we are rendering a single frame, almost all the
primitives will need to be sent.  However, if we render
multiple frames in an animation or real-time application and
the scene does not change much between frames, only a
small fraction of the primitives may need to be sent.1  To
take this application-dependent behavior into account, we
define the parameter c, the fraction of primitives that must
be redistributed.  The total network bandwidth required is
then  cnrOr ÇprimrÈ, where ÇprimrÈ is the size of the data
structure to represent a raw primitive.  We will not
explicitly tally the processing cost of communication, but it
should be noted that it is proportional to this term.

After redistribution, sort-first algorithms may accrue
other overhead that a uniprocessor pipeline would not.  If a
raw primitive falls in exactly one bucket, then it undergoes
geometry processing exactly once, and the costs are the
same as they would be on a uniprocessor.  If the primitive
overlaps more than one region, however, there will be
duplication of effort.  Each additional processor responsible
for a given raw primitive must duplicate some fraction fr of
pre-tessellation geometry processing, and some fraction fd
of post-tessellation geometry processing.  These fractions
will depend on the algorithms chosen for geometry
processing.  For example, explicit clipping to region

_____________
1This type of coherence is only available in sort-first, as it

is the only technique that distributes raw primitives; the
other methods distribute data that has undergone view-
dependent processing.
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Estimating primitive overlap

Both sort-first and sort-middle have a common source
of inefficiency:  primitives that cross region boundaries
must be processed in multiple regions.

We express this inefficiency in terms of the overlap
factor  (O), the number of regions covered by a typical
primitive.  We can estimate O  using the following
geometric construction:

W

H
Areas in which prim is 
processed twice

Areas in which prim is 
processed four times

Region boundary

w

h

w/2

h/2

Bounding 
box of

canonical 
primitive

Area in which prim is 
processed once

Center

If we assume screen regions have size W  x H  and a
typical primitive has a bounding box of size wÊxÊh, a
primitive will contribute to:  four regions if the center of
its bounding box falls into one of the four corner areas,
two regions if the center of its bounding box falls into one
of the four edge areas, and one region otherwise.

 If we assume that primitives have an equal probability
of falling anywhere within a region, the probability of
landing in a corner, edge, or center region is, respectively:

4 w 2( ) h 2( )
WH ,

2 w 2( ) H−h( )+2 h 2( ) W −w( )
WH ,

W −w( ) H−h( )
WH .

Weighting each of these by the number of regions
affected (4, 2, and 1, respectively), we can sum them to
get O , the expected number of regions affected by a
primitive:

O = W + w
W( ) H + h

H( )
This equation, first derived by John Eyles of UNC, is

valid even if w > W and h > H.  The following graph plots
O for various region and bounding-box sizes.  We have
found that these values correlate well with data obtained
from actual renderings [21].
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Thus we see that if primitives are small compared to
region size, primitive overlap contributes only a small
amount of the overall rendering cost.

boundaries requires duplication of effort while
implementations that avoid clipping avoid this extra work.
From these considerations, the additional cost of geometry
processing for the nr raw primitives is nr(Or-1)fr Çgeom-
pre-tessÈ, and for the Tnr display primitives is nd(Od-1)fd
Çgeom-post-tessÈ.

Finally, each display primitive that overlaps several
screen regions requires pixel rendering setup for each
region.  This adds processing overhead of nd(Od-1) Çrend-
setupÈ.

Frame-to-frame coherence

If we are rendering a single frame, most primitives will be
on the wrong renderer and will require redistribution, unless
we are very lucky.  Hence c will be close to 1.  However, if
we render several related frames in sequence, we may be
able to take advantage of frame-to-frame coherence to
reduce overhead.  To do this, processors that render a
primitive during one frame must retain that primitive for the
next frame.  If there is significant spatial coherence between
frames, fewer primitives will require redistribution during
the next frame and  c will be close to 0.  Of course, the

application must support retained-mode (display-list)
rendering, and bookkeeping is needed to keep track of
primitive ownership.

To get an estimate of c, we have analyzed traces from two
rendering sequences:  the rotating head model in the NCGA
Graphics Performance Committee's Picture-Level
Benchmark [1], and an architectural walkthrough of a
building interior seen through a head-mounted display.  In
both cases, we assumed a display size of 1280x1024 pixels
and a region size of 64x64 pixels.  In the Picture-Level
Benchmark, the head contains 60,000 triangles and rotates
4.5û each frame.  Here c varied between 0.13 and 0.16.  The
architectural model contained 64,796 triangles.  During a
60-second exploration of a room within the model, c varied
between 0.0 and 0.64 with a mean value of 0.15.  Thus we
see that c can be quite small in practice, making sort-first
appealing for applications with substantial coherence.

Tessellation and oversampling

If a system employs tessellation and oversampling, then
each raw primitive generates T display primitives, and each
of these in turn generates adS  samples.  This means that for
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each raw primitive that sort-first redistributes, sort-middle
must redistribute T display primitives, and sort-last must
redistribute TadS  samples.  If T and S  are large, it may
make the most sense to redistribute raw primitives since
there are far fewer of them.  We will see after considering
sort-middle and sort-last that sort-first has the lowest cost
under these circumstances.

Load balancing

Sort-first (and the other two approaches) are susceptible
to several types of load imbalance.  The most obvious is the
initial distribution of primitives across processors.  Even if
equal numbers of primitives are assigned to each processor,
primitives may require different amounts of work, so load
imbalances can result.

A second type of load imbalance arises from the
distribution of primitives over the screen.  In sort-first, it is
very likely that some regions of the screen will receive
many more primitives than others.   Also, some primitives
may take longer to process than others.  A way to combat
this is to make regions smaller and make each processor
responsible for more than one region.  This can be done
statically, which is simple, but may not achieve an optimal
load distribution for any given frame, or it may be done
dynamically, which increases algorithm complexity, but
may achieve better results.  When using frame-to-frame
coherence, dynamic load balancing must be constrained so
that a region can be assigned to the same processor in
successive frames.  Also, dividing the screen more finely to
improve the load balance tends to increase c.

Advantages and disadvantages

In summary, the advantages of sort-first are:

¥ Low communication requirements when the tessellation
ratio and the degree of oversampling are high, or when
frame-to-frame coherence can be exploited.

¥ Processors implement entire rendering pipeline for a
portion of the screen.

It has the following disadvantages, however:

¥ Susceptible to load imbalance.  Primitives may clump
into regions, concentrating the work on a few renderers.

¥ To take advantage of frame-to-frame coherence, retained
mode and complex data handling code are necessary.

Sort-middle analysis

Sort-middle algorithms are in some sense the most
"natural".  In contrast to sort-first, primitives are
redistributed after geometry processing, that is, after screen
coordinates have already been computed.  Figure 7 shows
the sort-middle rendering pipeline and its additional costs.

Processing and communication costs

In sort-middle,  the cost of geometry processing is the
same as on a uniprocessor.  Sort-middle algorithms first
accrue overhead when they redistribute display primitives.
Each of the nd  primitives must be placed into Od  buckets
at a total cost of ndOd ÇbucketdÈ.  The bandwidth required
to send these buckets is ndOd ÇprimdÈ, and the processing
cost of communication is proportional.  After redistribution,
display primitives that overlap more than one region require
extra pixel rendering setup.  The cost for this is (Od-1)
times the cost on a uniprocessor.  Visibility calculations cost
the same in sort-middle as they would on a uniprocessor.

Pipeline stage SM overhead

Geometry Ñ
Bucketization ndOd ÇbucketdÈ
Redistribution ndOd ÇprimdÈ
Pixel Rendering nd(Od-1) Çrend-setupÈ
Visibility Ñ

Figure 7.  Sort-middle processing and communication
overhead (communication costs indicated by  box).

From Figure 7 we can see that the overhead for sort-
middle depends on the number of display primitives nd and
on the display-primitive overlap factor Od.  These in turn
depend on the degree of tessellation.

Tessellation

Since nd =  Tnr, the overhead of bucketization and
redistribution in sort-middle depends critically on the
tessellation ratio T.  If T is large, sort-middle will transfer a
large number of display primitives.  If there is no
tessellation or T is small, sort-middle will transfer roughly
the same number of display primitives as there are raw
primitives.  Sort-first transfers raw primitives, so for sort-
middle to compare favorably, T must be small.

Load balancing

Sort-middle can suffer load imbalances from object
assignment and the clumping of primitives into regions in
the same manner as sort-first.   Load balancing the
assignment of objects in hierarchical display structures has
been explored [22].  The other problem, primitive clumping,
has been the focus of much of the research in hardware [23]
and software [4, 7, 12] sort-middle renderers.  The main
techniques are to make regions smaller (and more
numerous) and to assign regions dynamically to processors.
This tends to increase the overlap factor Od, and hence
should be applied with care.
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Pipeline stage SL-sparse SL-full

Geometry Ñ Ñ

Pixel Rendering Ñ Ñ

Redistribution nrarS  ÇsampleÈ NAS  ÇsampleÈ

Visibility Ñ NAS  ÇcompÈ

Figure 8.  Sort-last processing and communication
overhead (communication costs indicated by  box).

Advantages and disadvantages

In summary, sort-middle has the following advantages:

¥ General and straightforward; redistribution occurs at a
natural place in the pipeline.

It has the following disadvantages, however:

¥ High communication costs if tessellation ratio is high.
¥ Susceptible to load imbalance between rasterizers when

primitives are distributed unevenly over the screen.

Sort-last analysis

Sort-last algorithms are perhaps the most variable of the
three classes.  First, there is the difference between sparse
merging and full-frame merging.  Sparse merging takes
advantage of the observation that renderers in a sort-last
system may generate pixels for only a fraction of the screen,
and only these pixels need be merged [24].  Full-frame
merging takes advantage of the fact that merging a full
frame from each processor is very regular and can be done
using simple hardware [16].  Second, even sparse merging
algorithms may be improved in some cases.  The simplest
sparse algorithm merges every pixel rendered by every
processor.  Under some circumstances (e.g. when broadcast
is available [25]), it is possible to merge only a fraction of
the pixels rendered at each pixel location.  Here, we will
analyze only two cases:  simple sparse merging (SL-sparse)
and full-frame merging (SL-full).  Figure 8 shows the sort-
last rendering pipeline and the additional costs of SL-sparse
and SL-full not found in uniprocessor rendering.

Processing and communication costs

Sort-last geometry processing and pixel rendering cost the
same as they would on a uniprocessor.  After pixel samples
are rendered, however, they must be redistributed for
compositing.  Since SL-sparse sends only the samples
generated, it requires nrarS ÇsampleÈ network bandwidth,
where ÇsampleÈ is the size of the sample data structure.  SL-
sparse also requires communication processing proportional
to bandwidth.  After redistribution, SL-sparse performs the

same visibility calculations that would be performed on a
uniprocessor.

SL-full merges a full frame from each of the N processors
and therefore requires NAS ÇsampleÈ network bandwidth
and communication processing.  The renderers in SL-full
perform the same dAS  ÇcompÈ visibility calculations (in the
nodesÕ local z-buffers) as would a uniprocessor.  In addition,
they must merge N full frames of pixel samples, so they
perform NAS ÇcompÈ more visibility calculations than
would a uniprocessor.

Comparing the two approaches, we see that the per-frame
overhead for SL-sparse depends on the total number of
pixels generated nrar (and, therefore, the size of the scene),
but is independent of the number of processors.  The
overhead for SL-full, on the other hand, depends on the
number of processors N and the screen resolution A, but not
on the contents of the scene.  (If the frame rate is to remain
constant, however, N  must increase with the number of
primitives, so the cost of SL-full depends indirectly on the
size of the scene).

 If the communication network in SL-full is implemented
as a pipeline, increasing N  increases the available
communication bandwidth by the same factor, thereby
stenciling the network to fit the algorithm.  This gives it an
unusual property of linear scalability [21].

Oversampling

Many systems perform anti-aliasing by oversampling:
calculating the color for some number of samples that lie
within each pixel and filtering these samples down to one
color.  In sort-last systems that oversample, samples are
treated as pixels and merged and processed similarly.  Thus,
the degree of oversampling S linearly affects the cost of
sort-last algorithms, as shown in Figure 8.  Oversampling
rates of up to 16 are not uncommon.  For these systems,
bandwidth must be provided accordingly.

Load balancing

Sort-last renderers can suffer load imbalances from an
uneven distribution of rendering work in the same manner
as sort-first and sort-middle.  Sort-last is less prone to load
imbalances from primitive clumping, however, since
renderers handle the entire screen.  In SL-sparse, network
traffic and compositing can be unbalanced if more pixels are
sent to one compositor than another.  This can be addressed
by assigning compositors interleaved arrays of pixels so a
primitive from one renderer is likely to send equal numbers
of pixels to every compositor.  SL-full does not suffer from
this latter type of load imbalance.

Advantages and disadvantages

 In summary, sort-last has the following advantages:

¥ Renderers implement the full rendering pipeline and are
independent until pixel merging.
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Pipeline Stage Sort-first Sort-middle SL-sparse SL-full

Geometry nr Çpre-geomÈ Ñ Ñ Ñ

(Bucketization) nr ÇbucketrÈ T nr ÇbucketdÈ Ñ Ñ

Visibility Ñ Ñ Ñ NAS  ÇcompÈ

Redistribution cnr ÇprimrÈ T nr ÇprimdÈ nrarS ÇsampleÈ NAS ÇsampleÈ

Figure 9.  Processing and communication overhead assuming primitive overlap is negligible.

¥ Less prone to load imbalance.
¥ SL-full merging can be embedded in a linear network,

making it linearly scalable.

However, it has the following disadvantage:

¥ Pixel traffic may be extremely high, particularly when
oversampling.

Comparison of approaches

In this final section we compare the three approaches and
provide some guidance in determining when each is
preferable.  The analytic models just developed provide a
good starting point, but as mentioned above, other factors,
such as characteristics of the application and hardware on
which the algorithm will be implemented, also come into
play.  We will see that none of the approaches is a clear
winner or loser under all conditions; rather, each is
potentially useful for some set of applications and
implementation constraints.

Processing cost

Figures 6 through 8 list the processing overhead for the
three rendering approaches.  We can simplify these by
observing that overhead due to primitive overlap is likely to
be small for most applications (see sidebar on p. 6).  If we
ignore primitive overlap, the processing and communication
overhead for the different approaches are as shown in
Figure 9.

How important is each of these factors?  Pre-
transformation overhead (sort-first) and bucketization
overhead (sort-first and sort-middle) may or may not be
significant relative to the remaining geometry and
rasterization tasks.  This will depend on the complexity of
the implementation:  this overhead may be substantial when
compared with the rendering costs of simple rendering
algorithms, but may be insignificant when compared with
the costs of high-quality rendering algorithms.  SL-sparse
has little processing overhead beyond the cost of
redistributing pixels.  SL-full  requires much more
processing for compositing, suggesting hardware support.
All of the approaches require extra processing to handle the
redistribution of primitives or pixels, but this depends on
communication bandwidth requirements, which we will
consider next.

Communication cost

Figure 9 shows the communication costs for the different
approaches (in boxes).  We will consider these in turn.

First, note that the communication requirements for sort-
first depend on c.  When c is small, the communication
requirements for sort-first can be very small.  However, if
sort-first is used without coherence or if c is close to 1, the
entire dataset of raw primitives is transferred every frame.
This is similar to sort-middle, but sort-middle transfers
display primitives; there are T  times as many of them.
Hence, if the tessellation ratio T is high, sort-first requires
less bandwidth.  On the other hand, if c = 1 and there is little
or no tessellation, sort-middle is preferred over sort-first.
We can further understand this trend by considering average
primitive size.  Systems that tessellate often generate
display primitives that are about a pixel or so in size; the
smaller the display primitive, the more accurate the
rendering of curved surfaces.  Under these circumstances, T
»  ar, and there are about ar times as many display
primitives as raw primitives.

The tradeoffs between sort-first/sort-middle and SL-
sparse depend on the relative sizes of primitives and
primitives' and pixels' data structures.  In particular, sort-
first (no coherence) is favored if ÇprimrÈÊ<ÊarSÊÇsampleÈ
and sort-middle is favored if ÇprimdÈÊ<ÊadSÊÇsampleÈ.  So if
primitives tend to be simple, but cover a large area of the
screen, or if  oversampling is employed, sort-first or sort-
middle are favored.  If primitives are complex but cover a
small screen area, SL-sparse is favored.

Comparing SL-sparse and SL-full, we see that SL-sparse
is favored unless NAÊ<Ênrar, or in other words, unless the
depth complexity of the entire image is greater than the
number of processors.  On sample datasets analyzed by the
authors, depth complexity ranged from 0.53 to 12.9 with a
median of 3.2 [21, 24].  From these results we conclude that
SL-sparse requires less communication bandwidth than SL-
full under most conditions.

Hardware vs. software

So far we have ignored a point that is critical to this
discussion:  we have considered processing and
communication costs to be abstract quantities, such as
floating-point operations or bits.  This ignores the fact that
their real costs (in time, dollars, watts, etc.) depend on the
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ease in which the architecture or machine can perform these
operations.   For example, communicating a bit of data over
an ethernet network can be orders of magnitude more
expensive than sending the same bit over a dedicated
hardware communication channel.  Similarly, if
communication in sort-last is accelerated in hardware, as it
is in several current commercial machines [17, 18, 19], it
may be less expensive according to some measures than
communication in a sort-middle system that sends much
less data.  We can view hardware acceleration, then, as a
way of reducing the real costs of critical or "bottlenecked"
operations.

Other factors

Some of the approaches place constraints on the
application and set of rendering algorithms that may be
employed.  For example, only applications that use retained
mode can use sort-first with frame-to-frame coherence,
since the graphics database must reside on the renderers.

Sort-last constrains the choice of rendering algorithms
because visibility is determined strictly by compositing.
Some rendering systems allow rendering order to determine
visibility as well as depth value (for effects like stencils and
transparency).  This may be difficult to implement
efficiently on a sort-last system (it can present problems on
any of these fully-parallel renderers).

In sort-first and sort-last each processor implements an
entire rendering pipeline.  Renderers in these systems may
be able to take advantage of techniques and/or designs used
in "single-stream" renderers.  Sort-middle breaks the
rendering pipeline between geometry processing and
rasterization, so a sort-middle design must make screen-
space data accessible to the communication network.

Finally, the approaches differ with respect to load
balancing.  Sort-first and sort-middle both are susceptible to
primitives clustering in regions.  SL-sparse can suffer from
contention at compositors.  All of the approaches are
sensitive to load imbalances arising from the initial object
assignment.

Toward the future

Systems of the future will have to perform at much higher
levels than systems of today.  Performance will need to
scale in at least two ways:  increased resolution (due to
increased screen sizes and greater demand for antialiasing)
and increased primitive performance.

Increasing screen resolution while leaving the number of
primitives constant increases the communication costs of
both versions of sort-last relative to sort-first and sort-
middle:  for SL-sparse, it increases the number of pixels
covered by each primitive; for SL-full, it increases the
effective screen area AS.

Increasing the number of primitives, while leaving the
screen resolution unchanged, directly increases the
communication costs of all of the approaches except SL-full,

and indirectly increases the cost of SL-full, since N would
have to increase.  However, SL-full differs from the other
approaches in that its communication is fixed and local,
allowing it to scale with the number of processors.

The overlap factor O, though small today, is a function of
N.  As machine size increases to a thousand processors or
more, the size of the per-processor region can get quite
small.  When this happens, O increases, eventually driving
the overhead of sort-first and sort-middle to unacceptable
levels.

Finally, we have presented the simplest view that
redistribution occurs at only one point in the rendering
pipeline.  Hybrid architectures, which exploit tradeoffs
between the approaches, are possible.  For example, a sort-
first or sort-middle algorithm might choose to render rather
than redistribut small primitives, and redistribute pixels
instead.  Other hybrids are possible.  We conjecture that
hybrids will be a fertile area for future work.

Conclusion

The intrinsic sorting problem in rendering leads to a
simple way of classifying parallel rendering algorithms.
Based on this observation, we have proposed three classes:
sort-first, sort-middle, and sort-last.  We have analyzed
some of the fundamental cost tradeoffs and described some
of the qualitative tradeoffs between these approaches to give
the reader a framework for choosing between them.

Although it would be reassuring to state categorically that
one approach is always preferred, it would be inaccurate:
tradeoffs must be considered which are dependent on
implementation and application.  We have attempted in this
paper to provide a framework and appropriate tools for the
reader to select the right approach given his or her own
application and machine requirements.  We also hope this
work will motivate further investigations into the tradeoffs
between alternative parallel rendering strategies.
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