
Paper 2-26

Changes & Enhancements for ODS by Example (through Version 8.2)
Sandy McNeill, SAS, Cary, NC

ABSTRACT
The purpose of this paper is to show through example some of
the new ODS features and options that have been added for SAS
Version 8.2. Some of the highlights are: production PDF
destination; template options which allow the invocation of a
macro or evaluation of an expression using values from other
columns on the same row; in-line formatting for the PRINTER
and RTF destinations which allows a finer control over page
breaks, subscripting, superscripting, formatting of particular
words in a cell instead of the entire cell; and style control for titles
and footnotes for the PRINTER and RTF destinations. This
paper will talk about each of these topics along with some
examples.

INTRODUCTION
With each new version of SAS, the ODS developers stay hard at
work adding new features or improving existing features to
hopefully make your jobs easier at producing output the way you
need it from SAS®. This paper will describe and show examples
of some of these new features that we have added for the latest
version of SAS Software®.

PDF DESTINATION
I debated calling this a new production destination since some
users have been using this in its experimental form, but PDF is
now a production destination. This is native PDF without the
need for the Adobe Acrobat Distiller. Prior to Version 8.2, you
could obtain PDF output by outputting to a postscript file and then
invoking the Adobe Acrobat Distiller to distill the postscript into
PDF. However, now there is no need for the distiller since we
write the native PDF code. The syntax for this is very easy:

ods Printer PDF file=’foo.pdf’
Where foo is, of course, the filename.

Even though you no longer need a distiller, you will still need
some type of viewer to view the PDF output. A common viewer
for the PCs is Adobe® Acrobat Reader and a common viewer for
Unix is ghostview.

STYLE CONTROL FOR TITLE/FOOTNOTE STATEMENTS
In SAS Version 8.1, some of the graph options allowed on the
title and footnote statements were passed on to HTML. What this
allowed was the stylistic customization of your title and footnote
statements such as changing the font, color, height, and
justification. Keep in mind that I am talking about titles and
footnotes in HTML located OUTSIDE the graph image. If indeed
you are running a graph proc, use the options NOGTITLE and
NOGFOOTER to place the titles and footnotes outside of the
graph image.

In addition to the options on the title/footnote statement, some of
the GOPTIONS were also respected. Unfortunately, we ran out
of time for Version 8.1 and did not get to add this functionality into
all the destinations. The good news is that this same capability is
now available in Version 8.2 for the Printer and RTF destinations.
The graph options that are respected on the title/footnote
statements are: COLOR, FONT, HEIGHT, and UNDERLIN. The
GOPTIONS that are supported are: FTITLE, FTEXT, GUNIT,
HTITLE, and HTEXT.

Here is an example using the PDF destination with several of
these options being used:

Title font=courier height=8pt color=blue

j=left ‘Catch the ‘ font=times
height=12pt ‘Wave’;

ods printer pdf file=’catch.pdf’;
proc print data=sashelp.class;run;
ods printer close;

The GOPTIONS work as documented in the SAS/Graph
documentation. The values set in the GOPTIONS will be used
unless the corresponding style attribute is specified on the
title/footnote statement. In that case, the value actually specified
on the title/footnote statement will win. For example, if I set the
GOPTION HTITLE=5pt, this is setting the HEIGHT style attribute.
If you do not specify a HEIGHT option on your TITLE statement,
then the height of your text will be 5 points. However, if you
specify HEIGHT=10pt on the TITLE statement, then the HEIGHT
option on the TITLE statement supercedes the GOPTION. Now
if you are familiar with ODS and style templates, you are probably
asking yourself “But what about the style attributes specified in
the style template? The order of precedence is:

 Style template
 Goptions
 Option specified on the title/footnote statement

Here’s what this means: Say you are using a style with a
particular font size for titles and footnotes (the default font size for
titles is 5 for HTML (styles.default) and 13pt for the PRINTER
destinations (styles.printer)). So let’s say we are using the
PRINTER destination with a default font size of 13pt. If you do
not specify HTITLE in the goptions and if you do not specify
HEIGHT on the title statement, then the title will be in 13pt.
However, if you specify HEIGHT=8pt on the title statement, then
the font size for the title will be 8 pt. If you use GOPTIONS
HTITLE=8pt and do not use a HEIGHT option on the title
statement, then the size will be retrieved from the goptions
statement. The goptions HTITLE overrides the font size in the
ODS style that is being used.

One caveat to the interaction with the ODS styles: by default, the
font for the titles and the footers in the default ODS style template
is BOLD and ITALIC. We received some feedback from
SAS/GRAPH users that since there is no option on the title or
footnote statement to remove the BOLD or ITALIC, but there are
options to turn on those attributes, they would like the BOLD and
ITALIC turned off automatically when a FONT is specified. This
only is in effect when you use the options NOGTITLE or
NOGFOOTER on the ODS statement. You can, of course, turn
off the BOLD and ITALIC for all your titles and footnotes by
modifying the style template.

Here’s an example of using the default style and specifying a font
which will turn off the BOLD and ITALIC that is received from the
default style. :

Ods html file=’foo.html’ nogtitle ;
Title font=COURIER ‘This is a title’;
proc gchart data=sashelp.class;
vbar sex;
run;
ods html close;

If you want to change the font for a particular title, but you still
want BOLD and ITALIC, then just use those options on the title
statement.

Ods html file=’foo2.html’ nogtitle;

Advanced Tutorials

2

Title font=courier bold italic ‘Bolded
Title’;
Proc gchart data=sashelp.class;
Vbar sex;
Run;
Ods html close;

Now on to other examples.

Here is an example in which I am creating a new style called
SmallTFfont. I am going to be using the RTF destination, so this
style will inherit from Styles.RTF and it will specify a font size of 6
pt for both the title and the footnote statements.

Proc template ;
Define style SmallTFfont;
Parent = Styles.RTF;

Style SystemTitle from SystemTitle /
Font = ("Arial, Helvetica", 6pt, bold);

Style SystemFooter from systemFooter /
Font = (“Arial, Helvetica”, 6pt, bold);

End;
Run;

TITLE CUSTOMIZATION EXAMPLE 1
The font size of the title statement will be 6pt because we are
using the new smallTFfont that we defined above. There are two
text strings with one of them left justified and the other one right
justified. We did not specify a font, so the font weight will be
BOLD because it is picking up the BOLD from the SmallTFfont.
The foreground color of the text will be BLACK, which the style
SmallTFfont inherits from Styles.RTF which inherits from
Styles.Printer.

Title j=right ‘WAVE’ j=left ‘Catch the’;
Ods rtf file=’titles1.rtf’ style=smallTFfont;
Proc Print data=sashelp.class; run;
Ods rtf close;

TITLE CUSTOMIZATION EXAMPE 2
The font size of the title statement will be 9pt because now we
are specifying a HEIGHT option on the title statement. This
HEIGHT option will override the font size that was specified in the
style SmallTFfont. All the rest of the attributes will remain the
same as in Title Example 1. The height attribute remains 9pt until
the end of the statement or until another height option is
specified.

title HEIGHT=9pt j=right ‘WAVE’ j=left
‘Catch the’;

Ods rtf file=’titles2.rtf’ style=smallTFfont;
Proc Print data=sashelp.class; run;
Ods rtf close;

TITLE CUSTOMIZATION EXAMPLE 3
Now we are using a font option. Because of this, the BOLD font
weight will be cleared. The only attributes that change in this
example are the font name and the font weight which is no longer
BOLD.

title HEIGHT=9pt FONT=courier j=right
‘WAVE’ j=left ‘Catch the’;

Ods rtf file=’titles3.rtf’ style=smallTFfont;
Proc Print data=sashelp.class; run;
Ods rtf close;

TITLE CUSTOMIZATION EXAMPLE 4

We don’t like a title statement that is not bolded, so we are going
to turn the font weight BOLD back on. The rest of the attributes
will remain the same. There is no option to turn the bold off, so
once you turn it on, it is on for the remainder of the statement.

title BOLD HEIGHT=9pt FONT=courier j=right
‘WAVE’ j=left ‘Catch the’;

Ods rtf file=’titles4.rtf’ style=smallTFfont;
Proc Print data=sashelp.class; run;
Ods rtf close;

TITLE CUSTOMIZATION EXAMPLE 5
Better example of interaction between the style template and the
title statement. Create a new style and modify the
SYSTEMTITLE style element such that the text of the titles will
be the color blue. Then use some options on the title statement
and see how the color of the titles is blue unless the color is
overridden on the statement. “Catch” is blue from the blue
foreground set in the SystemTitle. ‘the’ is green from the title
statement color option. ‘WAVE’ is blue again from the style
template and the varying heights from the title2 statement

proc template;
define style ex5; parent = styles.rtf;
style SystemTitle from SystemTitle /

foreground = blue;
end;
run;

title j=left font=’Comic Sans MS’
‘Catch ‘ color=green ‘the’;

title2 j=center font=’Comic Sans MS’
height=24pt ‘W’
height=20pt ‘A’
height=16pt ‘V’
height=12pt ‘E’;

ods rtf file=’titles5.rtf’ style=ex5;
Proc Print data=sashelp.class;run;
Ods rtf close;

IN-LINE FORMATTING AND PAGE BREAK CONTROL
The PRINTER and RTF destinations now support the ability to
insert simple formatting text within a given cell or paragraph.
The types of formatting available are: specifying a style option to
customize the font, color, etc; specifying a superscript and
subscript; specifying a dagger or sigma character; specifying raw
text to be inserted into the document for the open destination or
you can specify that the raw text be targeted to a particular
destination.

To use any of these special formatting tricks, you need to use an
escape character. By default, ‘03’x is expected as the escape
character. However, using this everywhere you want special
formatting is a pain, so we added a special ODS statement just
for specifying the escape character that you would like to use.

Ods escapechar = ‘\’;
This statement above would specify the backslash character as
the escape character to be used when specifying the use of in-
line formatting.

Assuming we are using the above statement and have specified
the backslash as our escape character, here is a table of the
formatting codes and their definitions.
\w Preferred line break. If the line breaks, it

breaks there; but if there’s enough room,
it won’t break

\z Error code. Formats the output like a
SAS error message. Also available:
\1z = error
\2z = warning
\3z = note
\4z = fatal

\m Set a mark. The position is remembered

Advanced Tutorials

3

and if the line wraps, it will wrap to this
position.

\-2n Wrap to mark
\n Wrap to left margin
\[arg]n Wrap where the value specified for the

arg indicates how far to advance
vertically.

\S = {style attributes} Lets you specify style attributes. See
discussion about the style option in this
paper under New Template Features, or
see the Style statement documentation
for Proc Template in the on-line
documentation.

\{super text} Superscript what is denoted by text
\{sub text} Subscript what is denoted by text
\R</tag>”raw-text” Insert raw text into document for the

current output destination. The tag is
optional and represents a particular
destination. If the tag value is present,
then the raw text only appears in the
output for the specified destination. The
values for tag would be: RTF, PDF, PS

I am going to go over an example, but for more information see
the paper written by Brian Schellenberger (the in-line formatting
guru) at http://www.sas.com/rnd/base/topics/odsprinter/qual.pdf.

IN-LINE FORMATTING EXAMPLE
Example of In-Line formatting using both the Postscript
destination and the RTF destination. This example demonstrates
the ability to subscript, superscript, and change the formatting of
words within a particular cell.

data b;
x= "\3z\mIn 8.2, you can put " ||

"\S={font_weight=bold}bold\S={} " ||
"and " ||
"\S={font_style=italic}italic\S={} " ||
"text into your cells. It's " ||
"\S={font_style=italic}n\S={}" ||
"\{super 2} the fun." ||
"\-2nWhere do we end up?";

y=2;
z=3;
run;

proc template;
define style foo;
parent = styles.rtf;
style systemtitle from systemtitle /

protectspecialchars = off;
end;
run;

ods escapechar = '\';

ods printer ps file='InLineFormatEx.ps';
ods rtf file='InLineFormatEx.rtf'

style = foo;

proc report nowd data=b;
title2 '001 PROC REPORT: Using Functions';
title3 'In a title too:

\{super super} \{sub sub}';
title4 '\{dagger} \{sigma}';
run;

ods rtf close;
ods printer close;

A couple things are worth pointing out about this example. This
example uses the MARK (escapechar m) formatting; however,

this will currently only work for the PRINTER destinations such as
postscript and PDF. If you run this example and look at the RTF
output, you’ll see that the second line “Where do we end up” is
not indented, but it IS indented in the PRINTER destinations.
Another difference with the destinations is that for RTF, you must
tweak the SystemTitle style element and turn off the
PROTECTSPECIALCHARS attribute if you want to use the in-line
formatting in the title statement (or tweak SystemFooter for
footnote statements). You don’t, however, have to do this for the
PRINTER destinations. We are looking into making this more
consistent for Version 9.

CONTROLLING PAGEBREAKS FOR RTF AND PRINTER
Another option that has been added to the PRINTER and the
RTF destinations is the ability to control page breaks. Currently,
each procedure call starts a new page. Sometimes you don’t
want that, and with the number of questions that we have
received asking if it is possible to control the page breaks, I’d say
the number of you wanting this functionality is pretty high.

The option to control page breaks for the PRINTER and the RTF
destinations is STARTPAGE= and is an option on the ODS
statement. The values for this option are: NOW, ON, OFF. So if
you use
Ods printer ps file=’foo.ps’ startpage=no;
The implicit page breaks before each procedure will be
suppressed. We will, however, still go to a new page when we
run out of room on the page.

PAGE BREAK CONTROL EXAMPLE
This example is to demonstrate the usage of the STARTPAGE
option to control page breaking. On our initial ODS statement,
we specify STARTPAGE=NO which tells ODS to suppress the
page breaks which you would normally get for each procedure
invocation. Before the third PROC PRINT, we issue another
ODS statement, but this time with STARTPAGE=NOW. This will
start a new page at the next procedure call, but after that the
page breaks are still suppressed until a STARTPAGE=YES or a
STARTPAGE=NOW is processed.

Data x;a=1;b=2;c=3;run;
Ods printer ps file=’PrinterPageBreakEx.ps’

Startpage = no;
/* Page 1 */
Proc print data=x; run;
Proc Print data=x; run;
Ods printer startpage = now;
/* Page 2 */
Proc print data=sashelp.class; run;
Proc print data=x; run;
Ods printer startpage = yes;
/* Page 3 */
Proc print data=x; run;
/* Page 4 */
Proc print data=x; run;
Ods printer close;

TEMPLATE OPTIONS
Several new options have been added to Proc Template for
Version 8.2. One of these options is the ability to use a format
name as the attribute value in the STYLE option. This
functionality has been available in Proc Tabulate in Version 8.1,
but for consistency this has now been made available in Proc
Report, Proc Template, and in the new Proc Print styles. The
nice this about this is that you can write your user-defined formats
for traffic lighting, and then use these formats across several
different procedures.

Here is a Proc Template example to illustrate the use of creating
a user-defined format and then using that format as the value for
a style attribute. One of the reasons for using this technique is to
perform traffic lighting. This example uses the dataset exprev

Advanced Tutorials

4

and the formats found under Proc Print style example 3.
proc template;

define table RegionReport;
define column Region; end;
define column State;end;
define column month;end;
define column revenues;

style = {background=revfmt.
flyover=revfly.};

end;
end;

run;

ods html file='TemplateEx1.html';
ods listing close;

title 'Regional Activity';
data _null_;

set work.exprev;
file print ods=(template='RegionReport'

columns=(region
state
month
revenues));

put _ODS_;
run;

ods html close;
ods listing;

A second new functionality available in Proc Template is the
EXPRESSION function which can be used to evaluate an
expression which is given as the value for a style attribute. The
expression to be evaluated within the parentheses follows the
same rules as expressions used in the TRANSLATE and the
CELLSTYLE…AS functions. The powerful thing about this is that
you can get to the values in other columns on the same row
instead of just being able to use the global symbol _VAL_ to
access the value of the current cell.

Here’s a second Proc Template example which illustrates the use
of the EXPRESSION function. In this example, we use both an
expression and the global symbol _VAL_ as parameters in the
EXPRESSION function. The global symbol _VAL_ is the current
value of the cell. Notice in the expression how we are accessing
the values from other columns.

ods listing close;

ods html file='TemplateEx2.html';

data colors;
length lightness saturation hue $ 20;
input lightness $ & saturation $ & hue $ &;
datalines;

dark grayish blue
moderate reddish purple
dark moderate red
medium strong orange
light greenish yellow
strong bluish green
;

proc template;
define table colortab;
define header tabhd;

text 'Expression function';
style={foreground=#FF00FF};

end;
column lightness saturation hue

lightnesshue lightnessSaturHue;

define lightness;
header='Lightness';

end;

define saturation;
header='Saturation';

end;

define hue;
header='Hue';
style={background=expression("_val_")};

end;

define lightnesshue;
compute as lightness||' '||hue;
header='Foreground is lightness and

hue';
style = {background =

expression("lightness||' '||hue")};
end;

define lightnessSaturHue;
compute as lightness || ‘ ‘ ||

saturation || ' ' || hue;
header='Background is lightness

saturation hue';
style = {background =

expression("lightness ||
' ' || saturation ||
' ' || hue")};

end;
end;

data _null_;
set colors;
file print ods=
(template='colortab'
columns=(
lightness
saturation
hue
)

);

put _ods_;
run;

ods _all_ close; /* closes ALL the open */
/* destinations – even listing */

ods listing; /* reopen the listing */

A third new functionality that’s very cool is the ability to invoke a
macro by using the RESOLVE function. &_Val_ is a global
macro variable which is set with the value of the current cell
before the call to the macro. This lets you use the value of the
current cell within the macro.

This third Proc Template example illustrates the invocation of a
macro called DOURL which is evaluated and create the attribute
value for the URL style attribute. After running this example, you
should see that each of the columns headers is a unique link.
Column A will have a link to http://www.yourcompany.com/a,
column B will have a link to http://www.yourcompany.com/b, and
column C will have a link to http://www.yourcompany.com/c.

data x;
a=1;
b=2;
c=3;
run;

%macro dourl;

Advanced Tutorials

5

http://www.yourcompany.com/&_val_
%mend;

proc template;
define table testit;
column a b c;

define a;
define header hdra;

style={url = resolve('%dourl')};
end;
header = hdra;

end;

define b;
define header hdrb;

style={url = resolve('%dourl')};
end;
header = hdrb;

end;

define c;
define header hdrc;

style={url = resolve('%dourl')};
end;
header = hdrc;

end;
end;
run;

ods listing close;
ods html file='TemplateEx3.html';
data _null_;

set x;

file print ods=
(template='testit'
columns=(
a
b
c
)

);

put _ods_;
run;

ods html close;
ods listing;

PROC PRINT STYLE OPTION
For Version 8.2, Proc Print now has a style option which allows
style customizations just like Proc Report, Proc Tabulate, and
Proc Template. The general form of the style option is exactly
the same as for the other Procedures:
 STYLE<(location-name(s))> =
 <style-element-name>[style-attribute-specification(s)]

Where style-attribute-specification(s) is:
Style-attribute-name = Style-attribute-value

Here are tables which show the values that can be used for the
LOCATION-NAMES and also the default style element that is in
effect if you do not specify any STYLE-ELEMENT-NAME. These
tables are broken down by what is valid for different statements,
so there is a table for the Proc Print statement, a table for the
VAR statement, a table for the ID statement, and a table for the
SUM statement.

Location-Names and Default-Style-Element-Names for the
PROC PRINT Statement

Location Name(s) Affects Default Style
Element

DATA
COLUMN
COL

Default for all data
cells of all columns

Data

HEADER
HEAD
HDR

Default for all
header cells of all
columns

Header

OBS
OBSDATA
OBSCOLUM
N
OBSCOL

Data cells of OBS
column

RowHeader

OBSHEADER
OBSHEAD
OBSHDR

Header of OBS
column

Header

TOTAL
TOT
BYSUMLINE
BYLINE
BYSUM

The SUM line
containing totals for
each BY group

Header

BYLABEL
BYSUMLABEL
BYLBL
BYSUMLBL

The label for the
by-variable on the
line containing
SUM totals

Header

GRANDTOTAL
GRANDTOT
GRAND
GTOTAL
GTOT

The SUM line
containing the
grand totals for the
whole report

Header

TABLE
REPORT

Output data table
(not byline)

Table

Location-Names and Default-Style-Element-Names for the
VAR Statement
Location Name(s) Affects Default Style

Element
DATA
COLUMN
COL

Data Cells Data

HEADER
HEAD
HDR

The column header
cell

Header

Location-Names and Default-Style-Element-Names for the
ID Statement
Location Name(s) Affects Default Style

Element
DATA
COLUMN
COL

Data Cells RowHeader

HEADER
HEAD
HDR

The column header
cell

Header

Location-Names and Default-Style-Element-Names for the
SUM Statement
Location Name(s) Affects Default Style

Element

Advanced Tutorials

6

DATA
COLUMN
COL

Data cells Data

HEADER
HEAD
HDR

The column header
cell

Header

TOTAL
TOT
BYSUMLINE
BYLINE
BYSUM

Data cell containing
sum

Header

GRANDTOTAL
GRANDTOT
GRAND
GTOTAL
GTOT

Data cell containing
sum over whole
report

Header

Some of the more widely used style-attribute-names are:

• Font
• Font_face
• Font_size
• Font_style
• Font_width
• Foreground
• Background
• URL
• Just
• Preimage
• Postimage

A complete list of the style-attribute-names is documented in
“The Complete Guide to the SAS Output Delivery System”,
specifically within the Style Statement section under The
TEMPLATE Procedure. These style-attribute-names are the
same attribute names used wherever you might see the STYLE
statement.

So what does all this mean? How do you use it? Better to
explain this with examples. I am going to use the HTML
destination for these examples.

PROC PRINT STYLE EXAMPLE 1
Make the background of the OBS column and the background of
the column headers the color blue.

ods html file=’PrintStyleEx1.htm’;
Proc Print data=sashelp.class

style(OBS HEADER OBSHEADER) =
{background=blue};

Run;
Ods html close;

PROC PRINT STYLE EXAMPLE 2
A little fancier. Shows output using by and pageby.

proc sort data=sashelp.class out=class;
by sex age;

run;

ods html file='PrintStyleEx2.htm’;

proc print data=class n='Number of
observations for the sex and age '

style(N)={foreground=black
font_weight=bold}

style(OBS HEADER OBSHEADER) =
{background = mediumred
foreground = black}

/*TOTAL makes the whole TOTAL line red*/
style(TOTAL) = {background = white

foreground = mediumred}
style(GRANDTOTAL) = {background = BLACK

foreground = white}
style(BYSUMLABEL)= {background=mediumred

foreground = white
font_weight = bold};

var name height weight ;
sum height weight;
by sex age ;
pageby sex;
run;
ods html close;

PROC PRINT STYLE EXAMPLE 3
Since the by-line is generated outside of Proc Print, the style of
the by-line is not controllable from Proc Print. You would have to
modify the style element ByLine in the style template that you are
using. In these HTML examples, the default style template is
styles.default. However, a way around this with Proc Print is to
use the ID statement and use the same variables on the ID
statement as on your BY statement.

Use ID statement, which gets rid of the byline. Notice that I
removed the style for the OBS and the OBSHEADER and placed
a style on the ID statement.

proc sort data=sashelp.class out=class;
by sex age;

run;
ods html file='PrintStyleEx3.htm';
proc print data=class n='Number of
observations for the sex and age '

style(N)={foreground=black
font_weight=bold}

style(HEADER)={background=mediumred
foreground=black}

/* TOTAL makes the whole TOTAL line red */
style(TOTAL)={background=white

foreground=mediumred}
style(BYSUMLABEL)={background=mediumred

foreground=white
font_weight=bold};

var name height weight ;
sum height weight;
by sex age ;
id sex age / style(HEADER DATA) =

{background=mediumred
foreground=black};

pageby sex;
run;
ods html close;

PROC PRINT STYLE EXAMPLE 4
This last example shows how to do traffic lighting with Proc Print.
This capability is possible now through the use of the style
statement and user-defined formats. Once the formats are
defined to bind a particular style (in this case a background) to a
range of values, then the format is used as the attribute’s value.

In this example, we have four user-defined formats:

Revfmt – format for revenue numbers
Expfmt -- format for expense numbers
Revfly – format for revenue flyover (popup msg when

hovering over the cell)
Expfly – format for the revenue flyover

Their color schemes are just the opposite from each other: the

Advanced Tutorials

7

lower revenue numbers are shaded red to point out the fact that
the revenues were not so good, but the lower expense numbers
are indicated as green.

data exprev;
input Region $ State $ Month monyy5.

Expenses Revenues;
format month monyy5.;
datalines;

Southern GA JAN95 2000 8000
Southern GA FEB95 1200 6000
Southern FL FEB95 8500 11000
Northern NY FEB95 3000 4000
Northern NY MAR95 6000 5000
Southern FL MAR95 9800 13500
Northern MA MAR95 1500 1000
;

options nodate pageno=1 linesize=70
pagesize=60 nobyline;

proc sort data=exprev;
by region;

run;

proc format;
value revfmt

low-5000 = 'light red'
5000-10000 = 'yellow'
other = 'green';

value revfly
low-5000 = 'Your revenues are

dangerously low'
5000-10000 = 'Your revenues are all

right'
other = 'GREAT JOB! Keep up the good

work';
value expfmt

low-5000 = 'green'
5000-8000 = 'yellow'
other = 'red';

value expfly
low-5000 = 'Great job controlling those

expenses'
5000-8000 = 'You had better start

controlling expenses'
other = 'I''m bringing in the

comptroller';
run;

ods html file='PrintStyleEx4.htm';
proc print data=exprev noobs

n='Number of observations for the state: '
'Number of observations for the data set: ';
var revenues /

style(COLUMN) = {background=revfmt.
flyover=revfly.};

var expenses /
style(COLUMN) = {background=expfmt.

flyover=expfly.};
sum expenses revenues ;
by region;
id region;
run;

ods html close;

I will admit that there is a small defect in Version 8.2 with using
the user-defined formats as style attribute values. If you use a
format as a style attribute value, then you cannot define another
format for that variable. For instance, in the example above
where I use the format revfmt, you could not also have a format
statement for revenues, such as:

 Format revenues comma9.;
This problem will definitely be fixed at Version 9.

CONCLUSION
I hope that this paper has given you an insight into some of the
new features awaiting your use in SAS Version 8.2. ODS
continues to grow from input from YOU, the valued users, as we
strive to make SAS an invaluable tool to help you in your jobs.

REFERENCES
SAS Institute, Inc., The Complete Guide to the SAS® Output
Delivery System, Version 8, Cary, NC: SAS Institute, Inc., 1999.
310 pp.

Schellenberger, Brian., Presentation-Quality Tabular Output via
ODS., SAS Institute, Inc., 2000.
http://www.sas.com/rnd/base/topics/odsprinter/qual.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Mrs. Sandy McNeill
 SAS Institute, Inc.
 Cary, NC 27513
 Email: Sandy.McNeill@sas.com
 ODS specific questions can be directed to:
 ods@sas.com

Advanced Tutorials

	SUGI 26 Title Page

